Sunday, May 17, 2020

MODULATION

In electronics and telecommunicationsmodulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a modulating signal that typically contains information to be transmitted. Most radio systems in the 20th century used frequency modulation (FM) or amplitude modulation (AM) for radio broadcast.
modulator is a device that performs modulation. A demodulator (sometimes detector or demod) is a device that performs demodulation, the inverse of modulation. A modem (from modulator–demodulator) can perform both operations.
The aim of analog modulation is to transfer an analog baseband (or lowpass) signal, for example an audio signal or TV signal, over an analog bandpass channel at a different frequency, for example over a limited radio frequency band or a cable TV network channel. The aim of digital modulation is to transfer a digital bit stream over an analog communication channel, for example over the public switched telephone network (where a bandpass filter limits the frequency range to 300–3400 Hz) or over a limited radio frequency band. Analog and digital modulation facilitate frequency division multiplexing (FDM), where several low pass information signals are transferred simultaneously over the same shared physical medium, using separate passband channels (several different carrier frequencies).
The aim of digital baseband modulation methods, also known as line coding, is to transfer a digital bit stream over a baseband channel, typically a non-filtered copper wire such as a serial bus or a wired local area network.
The aim of pulse modulation methods is to transfer a narrowband analog signal, for example, a phone call over a wideband baseband channel or, in some of the schemes, as a bit stream over another digital transmission system.
In music synthesizers, modulation may be used to synthesize waveforms with an extensive overtone spectrum using a small number of oscillators. In this case, the carrier frequency is typically in the same order or much lower than the modulating waveform (see frequency modulation synthesis or ring modulation synthesis).

Analog modulation methods[edit]

A low-frequency message signal (top) may be carried by an AM or FM radio wave.
Waterfall plot of a 146.52 MHz radio carrier, with amplitude modulation by a 1,000 Hz sinusoid. Two strong sidebands at + and - 1 kHz from the carrier frequency are shown.
A carrier, frequency modulated by a 1,000 Hz sinusoid. The modulation index has been adjusted to around 2.4, so the carrier frequency has small amplitude. Several strong sidebands are apparent; in principle an infinite number are produced in FM but the higher-order sidebands are of negligible magnitude.
In analog modulation, the modulation is applied continuously in response to the analog information signal. Common analog modulation techniques include:

Digital modulation methods

Saturday, May 9, 2020

ARINC 429, ARINC DATA BUS

ARINC 429✈
 "Mark33 Digital Information Transfer System (DITS)," is also known as the Aeronautical Radio INC. (ARINC) technical standard for the predominant avionics data bus used on most higher-end commercial and transport aircraft. It defines the physical and electrical interfaces of a two-wire data bus and a data protocol to support an aircraft's avionics local area network.


Technical description✈

Medium and Signaling

ARINC 429 is a data transfer standard for aircraft avionics. It uses a self-clocking, self-synchronizing data bus protocol (Tx and Rx are on separate ports). The physical connection wires are twisted pairs carrying balanced differential signaling. Data words are 32 bits in length and most messages consist of a single data word. Messages are transmitted at either 12.5 or 100 kbit/s to other system elements that are monitoring the bus messages. The transmitter constantly transmits either 32-bit data words or the NULL state (0 Volts). A single wire pair is limited to one transmitter and no more than 20 receivers. The protocol allows for self-clocking at the receiver end, thus eliminating the need to transmit clocking data. ARINC 429 is an alternative to MIL-STD-1553.

Bit numbering, Transmission Order, and Bit Significance

The ARINC 429 unit of transmission is a fixed-length 32-bit frame, which the standard refers to as a 'word'. The bits within an ARINC 429 word are serially identified from Bit Number 1 to Bit Number 32 or simply Bit 1 to Bit 32. The fields and data structures of the ARINC 429 word are defined in terms of this numbering.
While it is common to illustrate serial protocol frames progressing in time from right to left, a reversed ordering is commonly practiced within the ARINC standard. Even though ARINC 429 word transmission begins with Bit 1 and ends with Bit 32, it is common to diagram and describe ARINC 429 words in the order from Bit 32 to Bit 1. In simplest terms, while the transmission order of bits (from the first transmitted bit to the last transmitted bit) for a 32-bit frame is conventionally diagrammed as
First bit > 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... 29, 30, 31, 32 < Last bit,
this sequence is often diagrammed in ARINC 429 publications in the opposite direction as
Last bit > 32, 31, 30, 29, ... 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 < First bit.
When the ARINC 429 word format is illustrated with Bit 32 to the left, the numeric representations in the data field generally read with the Most significant bit on the left. However, in this particular bit order presentation, the Label field reads with its most significant bit on the right. Like CAN Protocol Identifier Fields, ARINC 429 label fields are transmitted most-significant bit first. However, like UART ProtocolBinary-coded decimal numbers and binary numbers in the ARINC 429 data fields are generally transmitted least significant bit first.
Some equipment suppliers publish the bit transmission order as
First bit > 8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 11, 12, 13 … 32 < Last bit.
The suppliers that use this representation have in effect renumbered the bits in the Label field, converting the standard’s MSB 1-bit numbering for that field to LSB 1 bit numbering. This renumbering highlights the relative reversal of "bit endianness" between the Label representation and numeric data representations as defined within the ARINC 429 standard. Observe how the 87654321-bit numbering is similar to the 76543210 -bit numbering common in digital equipment; but reversed from the 12345678-bit numbering defined for the ARINC 429 Label field.
This notional reversal also reflects historical implementation details. ARINC 429 transceivers have been implemented with 32-bit shift registers. Parallel access to that shift register is often octet-oriented. As such, the bit order of the octet access is the bit order of the accessing device, which is usually LSB 0; and serial transmission is arranged such that the least significant bit of each octet is transmitted first. So, in common practice, the accessing device wrote or read a "reversed label" (for example, to transmit a Label 2138 [or 8B16] the bit-reversed value D116 is written to the Label octet). Newer or "enhanced" transceivers may be configured to reverse the Label field bit order "in hardware."

Word format

ARINC 429 Word Format
PSSMMSBDataLSBSDILSBLabelMSB
3231302928272625242322212019181716151413121110987654321
Each ARINC 429 word is a 32-bit sequence that contains five fields:
Bit 32 is the parity bit and is used to verify that the word was not damaged or garbled during transmission. Every ARINC 429 channel typically uses "odd" parity - there must be an odd number of "1" bits in the word. This bit is set to 0 or 1 to ensure that the correct number of bits are set to 1 in the word.
 Bits 30 to 31 are the Sign/Status Matrix (SSM) - these bits may have various encodings dependent on the particular data representation applied to a given word:
  • In all cases using the SSM, these bits may be encoded to indicate:
Normal Operation (NO) - Indicates the data in this word is considered to be correct data. Functional Test (FT) - Indicates that the data is being provided by a test source. Failure Warning (FW) - Indicates a failure that causes the data to be suspect or missing.
No Computed Data (NCD) - Indicates that the data is missing or inaccurate for some reason other than a failure. For example, autopilot commands will show as NCD when the autopilot is not turned on.
  • In the case of Binary Coded Decimal (BCD) representation, the SSM may also indicate the Sign (+/-) of the data or some information analogous to sign, like an orientation (North/South; East/West). When so indicating sign, the SSM is also considered to be indicating Normal Operation.
  • In the case of two's-complement representation of signed binary numbers (BNR), Bit 29 represents the number's sign; that is, sign indication is delegated to Bit 29 in this case.
  • In the case of discrete data representation (e.g., bit-fields), the SSM has a different, signless encoding.[14]
SSMData Dependent SSM Encodings:
Bit 31Bit 30Sign/Status Matrix for BCD DataStatus Matrix for BNR DataStatus Matrix for Discrete Data
00Plus, North, East, Right, To, AboveFailure Warning (FW)Verified Data, Normal Operation
01No Computed Data (NCD)No Computed Data (NCD)No Computed Data (NCD)
10Functional Test (FT)Functional Test (FT)Functional Test (FT)
11Minus, South, West, Left, From, BelowNormal Operation (NO)Failure Warning (FW)
Bit 29Sign Matrix for BNR Data
0Plus, North, East, Right, To, Above
1Minus, South, West, Left, From, Below
Bits 11 to 29 contain the data. Bit-field, Binary Coded Decimal (BCD), and Binary Number Representation (BNR) are common ARINC 429 data formats. Data formats may also be mixed.
 Bits 9 and 10 are Source/Destination Identifiers (SDI) and may indicate the intended receiver or, more frequently, indicate the transmitting subsystem.
 Bits 1 to 8 contain a label (label words), expressed in octal (MSB 1-bit numbering), identifying the data type.
The image below exemplifies many of the concepts explained in the adjacent sections. In this image the Label (260) appears in red, the Data in blue-green, and the Parity bit in navy blue.
An ARINC 429 Word, viewed as a signal, with overlaid decoding
Example of ARINC 429
PSSMMSBDataLSBSDILSBLabelMSB
3231302928272625242322212019181716151413121110987654321
10010001100011000100010000001101
10233170062
JOUR(1)JOUR(0)MOISMilliseconds

Labels


Illustration of the airspeed indication and detection system on fly-by-wire aircraft
Label guidelines are provided as part of the ARINC 429 specification, for various equipment types. Each aircraft will contain a number of different systems, such as flight management computers, inertial reference systems, air data computers, radar altimeters, radios, and GPS sensors. For each type of equipment, a set of standard parameters is defined, which is common across all manufacturers and models. For example, any air data computer will provide the barometric altitude of the aircraft as label 203. This allows some degree of interchangeability of parts, as all air data computers behave, for the most part, in the same way. There are only a limited number of labels, though, and so label 203 may have some completely different meaning if sent by a GPS sensor, for example. Very commonly needed aircraft parameters, however, use the same label regardless of source. Also, as with any specification, each manufacturer has slight differences from the formal specification, such as by providing extra data above and beyond the specification, leaving out some data recommended by the specification, or other various changes.

Protection from interference

Avionics systems must meet environmental requirements, usually stated as RTCA DO-160 environmental categories. ARINC 429 employs several physical, electrical, and protocol techniques to minimize electromagnetic interference with on-board radios and other equipment, for example via other transmission cables.
Its cabling is a shielded 70 Ω twisted-pair. ARINC signaling defines a 20 Vp differential between the Data A and Data B levels within the bipolar transmission (i.e. 10 V on Data A and -10 V on Data B would constitute a valid driving signal), and the specification defines acceptable voltage rise and fall times.
ARINC 429's data encoding uses a complementary differential bipolar return-to-zero (BPRZ) transmission waveform, further reducing EMI emissions from the cable itself.

Development tools

When developing and/or troubleshooting the ARINC 429 bus, examination of hardware signals can be very important to find problems. A protocol analyzer is useful to collect, analyze, decode, and store signals.

Saturday, June 14, 2014

Air data inertial reference unit

Air data inertial reference unit (ADIRU)✈


In an Airbus A-320 family aircraft air data inertial reference unit (ADIRU) is a key component of the integrated air data inertial reference system (ADIRS), which supplies air data (airspeed, angle of attack and altitude) and inertial reference (position and attitude) information to the pilots' electronic flight instrument system displays as well as other systems on the aircraft such as the engines, autopilot, flight control, and landing gear systems. An ADIRU acts as a single fault-tolerant source of navigational data for both pilots of an aircraft. It may be complemented by a secondary attitude air data reference unit (SAARU), as in the Boeing 777 design.
This device is used on various military aircraft as well as civilian airliners starting with the Airbus A320 and Boeing 777.

Description

An ADIRS consists of up to three fault-tolerant ADIRUs located in the aircraft electronic rack, associated control and display unit (CDU) in the cockpit, and remotely mounted air data modules (ADMs). The No 3 ADIRU is a redundant unit that may be selected to supply data to either the commander's or the co-pilot's displays in the event of a partial or complete failure of either the No 1 or No 2 ADIRU. There is no cross-channel redundancy between the Nos 1 and 2 ADIRUs, as No 3 ADIRU is the only alternate source of air and inertial reference data. An inertial reference (IR) fault in ADIRU No 1 or 2 will cause a loss of attitude and navigation information on their associated primary flight display (PFD) and navigation display (ND) screens. An air data reference (ADR) fault will cause the loss of airspeed and altitude information on the affected display. In either case, the information can only be restored by selecting the No 3 ADIRU.
Each ADIRU comprises an ADR and an inertial reference (IR) component.

Air data reference

The ADR component of an ADIRU provides airspeed, Mach number, angle of attack, temperature, and barometric altitude data. Ram air pressure and static pressures used in calculating airspeed are measured by small ADMs located as close as possible to the respective pitot and static pressure sensors. The ADMs transmit their pressures to the ADIRUs through ARINC 429 data buses.

Inertial reference

The IR component of an ADIRU gives attitude, flight path vector, ground speed, and positional data. The ring laser gyroscope is a core enabling technology in the system and is used together with accelerometers, GPS and other sensors to provide raw data. The primary benefits of a ring laser over older mechanical gyroscopes are that there are no moving parts, it is rugged and lightweight, frictionless, and does not resist a change in precession.

Complexity in redundancy

Analysis of complex systems is itself so difficult as to be subject to errors in the certification process. Complex interactions between flight computers and ADIRU's can lead to counter-intuitive behavior for the crew in the event of a failure. In the case of Qantas Flight 72, the captain switched the source of IR data from ADIRU1 to ADIRU3 following a failure of ADIRU1; however, ADIRU1 continued to supply ADR data to the captain's primary flight display. In addition, the master flight control computer (PRIM1) was switched from PRIM1 to PRIM2, then PRIM2 back to PRIM1, thereby creating a situation of uncertainty for the crew who did not know which redundant systems they were relying upon.
Reliance on the redundancy of aircraft systems and can also lead to delays in executing needed repairs as airline operators rely on the redundancy to keep the aircraft system working without having to repair faults immediately.


Position error

Position error is one of the errors affecting the systems in an aircraft for measuring airspeed and altitude.[1][2] It is not practical or necessary for an aircraft to have an airspeed indicating system and an altitude indicating system that are exactly accurate. A small amount of error is tolerable.

Static system[edit]

All aircraft are equipped with a small hole in the surface of the aircraft called the static port. The air pressure in the vicinity of the static port is conveyed by a conduitto the altimeter and the airspeed indicator. This static port and the conduit constitute the aircraft's static system. The objective of the static system is to sense the pressure of the air at the altitude at which the aircraft is flying. In an ideal static system the air pressure fed to the altimeter and airspeed indicator is equal to the pressure of the air at the altitude at which the aircraft is flying.
As the air flows past an aircraft in flight, the streamlines are affected by the presence of the aircraft and the speed of the air relative to the aircraft is different at different positions on the aircraft's outer surface. In consequence of Bernoulli's principle, the different speeds of the air result in different pressures at different positions on the aircraft's surface.[3] The ideal position for a static port is a position where the local air pressure in flight is always equal to the pressure remote from the aircraft, however there is no position on an aircraft where this ideal situation exists for all angles of attack. When deciding on a position for a static port aircraft designers attempt to find a position where the error between static pressure and free-stream pressure is a minimum across the operating range of angle of attack of the aircraft. The residual error at any given angle of attack is called the position error[4]

Position error affects the indicated airspeed and the indicated altitude. Aircraft manufacturers use the aircraft flight manual to publish details of the error in indicated airspeed and indicated altitude across the operating range of speeds. In many aircraft, the effect of position error on airspeed is shown as the difference betweenindicated airspeed and calibrated airspeed. In some low-speed aircraft, the position error is shown as the difference between indicated airspeed and equivalent airspeed.

Pitot system[edit]

Bernoulli's principle states that total pressure (or stagnation pressure) is constant along a streamline.[5] There is no variation in stagnation pressure, regardless of the position on the streamline where it is measured. There is no position error associated with stagnation pressure.
The Pitot tube supplies pressure to the airspeed indicator. Pitot pressure is equal to stagnation pressure providing the Pitot tube is aligned with the local airflow, it is located outside the boundary layer, and outside the wash from the propeller. Pitot pressure can suffer alignment error but it is not vulnerable to position error.

Aircraft design standards[edit]

Aircraft design standards specify a maximum amount of Pitot-static system error. The error in indicated altitude must not be excessive because it is important for pilots to know their altitude with reasonable accuracy for the purpose of traffic separation. US Federal Aviation Regulations, Part 23,[6] §23.1325(e) includes the following requirement for the static pressure system:
  • The system error, in indicated pressure altitude, ..., may not exceed ±30 feet per 100 knot speed for the [operating speed range for the aircraft].
The error in indicated airspeed must also not be excessive. Part 23, §23.1323(b) includes the following requirement for the airspeed indicating system:
  • The system error, including position error, ..., may not exceed three percent of the calibrated airspeed or five knots, whichever is greater, throughout the [operating speed range for the aircraft].

Measuring position error[edit]

For the purpose of complying with an aircraft design standard that specifies a maximum permissible error in the airspeed indicating system it is necessary to measure the position error in a representative aircraft. There are many different methods for measuring position error. Some of the more common methods are:
  • use of a GNSS receiver while flying a triangular course
  • trailing conduit with static source, stabilized by a plastic cone
  • tower fly-by with photographs of the passing aircraft taken from the tower to accurately show the height of the aircraft above or below the tower
  • trailing bob with both Pitot and static sources